Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Mol Diagn Ther ; 28(2): 201-214, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38267771

RESUMO

Anal squamous cell carcinoma (ASCC) is a rare gastrointestinal malignancy associated with high-risk human papillomavirus (HPV) and is currently one of the fastest-growing causes of cancer incidence and mortality in developed countries. Although next-generation sequencing technologies (NGS) have revolutionized cancer and immuno-genomic research in various tumor types, a limited amount of clinical research has been developed to investigate the expression and the functional characterization of genomic data in ASCC. Herein, we comprehensively assess recent advancements in "omics" research, including a systematic analysis of genome-based studies, aiming to identify the most relevant ASCC cancer driver gene expressions and their associated signaling pathways. We also highlight the most significant biomarkers associated with anal cancer progression, gene expression of potential diagnostic biomarkers, expression of therapeutic drug targets, and emerging treatment opportunities. This review stresses the urgent need for developing target-specific therapies in ASCC. By illuminating the molecular characteristics and drug-target expression in ASCC, this study aims to provide insights for the development of precision medicine in anal cancer.


Assuntos
Neoplasias do Ânus , Carcinoma de Células Escamosas , Humanos , Biomarcadores , Neoplasias do Ânus/diagnóstico , Neoplasias do Ânus/genética , Neoplasias do Ânus/epidemiologia , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Genômica , Recidiva Local de Neoplasia/patologia
2.
Mol Cell Endocrinol ; 583: 112144, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38161049

RESUMO

This study examines the complex relationship between pancreatic cancer (PC) and type 2 diabetes (T2D) by focusing on the role of microRNAs (miRNAs). miRNAs are small non-coding RNAs that regulate gene expression and have been implicated in many diseases, including T2D and cancer. To begin, we conducted a literature review to identify miRNAs associated with the PC-T2D link. However, we found limited research on this specific association, with most studies focusing on the antitumor effects of metformin. Furthermore, we performed a bioinformatics analysis to identify new potential miRNAs that might be relevant in the context of PC-T2D. First, we identified miRNAs and gene expression alterations common to both diseases using publicly available datasets. Subsequently, we performed an integrative analysis between the identified miRNAs and genes alterations. As a result, we identified nine miRNAs that could potentially play an important role in the interplay between PC and T2D. These miRNAs have the potential to influence nearby cells and distant tissues, affecting critical processes like extracellular matrix remodeling and cell adhesion, ultimately contributing to the development of T2D or PC. Taken together, these analyses underscore the importance of further exploring the role of miRNAs in the complex interplay of PC and T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , MicroRNAs , Neoplasias Pancreáticas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Metformina/farmacologia , Neoplasias Pancreáticas/genética
3.
NPJ Biofilms Microbiomes ; 9(1): 48, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438354

RESUMO

Evidence indicates that the microbiome plays a significant role in HIV immunopathogenesis and associated complications. This study aimed to characterize the oral and anal microbiome of Men who have Sex with Men (MSM) and Transgender Women (TGW), with and without HIV. One hundred and thirty oral and anal DNA-derived samples were obtained from 78 participants and subjected to shotgun metagenomics sequencing for further microbiome analysis. Significant differences in the microbiome composition were found among subjects associated with HIV infection, gender, sex behavior, CD4+ T-cell counts, antiretroviral therapy (ART), and the presence of HPV-associated precancerous anal lesions. Results confirm the occurrence of oncogenic viromes in this high HIV-risk population. The oral microbiome in HIV-associated cases exhibited an enrichment of bacteria associated with periodontal disease pathogenesis. Conversely, anal bacteria showed a significant decrease in HIV-infected subjects (Coprococcus comes, Finegoldia magna, Blautia obeum, Catenibacterium mitsuokai). TGW showed enrichment in species related to sexual transmission, which concurs that most recruited TGW are or have been sex workers. Prevotella bivia and Fusobacterium gonidiaformans were positively associated with anal precancerous lesions among HIV-infected subjects. The enrichment of Holdemanella biformis and C. comes was associated with detectable viral load and ART-untreated patients. Metabolic pathways were distinctly affected by predominant factors linked to sexual behavior or HIV pathogenesis. Gene family analysis identified bacterial gene signatures as potential prognostic and predictive biomarkers for HIV/AIDS-associated malignancies. Conclusions: Identified microbial features at accessible sites are potential biomarkers for predicting precancerous anal lesions and therapeutic targets for HIV immunopathogenesis.


Assuntos
Infecções por HIV , Microbiota , Minorias Sexuais e de Gênero , Masculino , Humanos , Feminino , Infecções por HIV/complicações , Homossexualidade Masculina , Redes e Vias Metabólicas
4.
Biomedicines ; 11(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36979770

RESUMO

Anal squamous cell carcinoma (ASCC) is a rare malignancy with a rising incidence associated with human papillomavirus (HPV) infection. The locally advanced disease is associated with a 30% rate of treatment failure after standard chemoradiotherapy (CRT). We aimed to elucidate the prognostic factors for ASCC after curative CRT. A retrospective multicenter study of 176 consecutive patients with ASCC having completed CRT treated between 2010 and 2017 at two centers was performed. Complete response (CR), disease-free survival (DFS), and overall survival (OS) were analyzed by Kaplan-Meier estimates with log-rank tests. The hierarchical clustering on principal components (HCPC) method was employed in an unsupervised and multivariate approach. The CR rate was 70% and was predictive of DFS (p < 0.0001) and OS (p < 0.0001), where non-CR cases were associated with shorter DFS (HR = 16.5, 95% CI 8.19-33.21) and OS (HR = 8.42, 95% CI 3.77-18.81) in a univariate analysis. The median follow-up was 38 months, with a 3-year DFS of 71%. The prognostic factors for DFS were cT1-T2 (p = 0.0002), N0 (p = 0.035), HIV-positive (p = 0.047), HIV-HPV coinfection (p = 0.018), and well-differentiated tumors (p = 0.037). The three-year OS was 81.6%. Female sex (p = 0.05), cT1-T2 (p = 0.02) and well-differentiated tumors (p = 0.003) were associated with better OS. The unsupervised analysis demonstrated a clear segregation of patients in three clusters, identifying that poor prognosis clusters associated with shorter DFS (HR = 1.74 95% CI = 1.25-2.42, p = 0.0008) were enriched with the locally advanced disease, anal canal location, HIV-HPV coinfection, and non-CR. In conclusion, our results reinforce the prognostic value of T stage, N stage, sex, differentiation status, tumor location, and HIV-HPV coinfection in ASCC after CRT.

5.
Prog Neurobiol ; 223: 102425, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36828035

RESUMO

WWOX gene loss-of-function (LoF) has been associated with neuropathologies resulting in developmental, epileptic, and ataxic phenotypes of varying severity based on the level of WWOX dysfunction. WWOX gene biallelic germline variant p.Pro47Thr (P47T) has been causally associated with a new form of autosomal recessive cerebellar ataxia with epilepsy and intellectual disability (SCAR12, MIM:614322). This mutation affecting the WW1 protein binding domain of WWOX, impairs its interaction with canonical proline-proline-X-tyrosine motifs in partner proteins. We generated a mutant knock-in mouse model of Wwox P47T mutation that phenocopies human SCAR12. WwoxP47T/P47T mice displayed epilepsy, profound social behavior and cognition deficits, and poor motor coordination, and unlike KO models that survive only for 1 month, live beyond 1 year of age. These deficits progressed with age and mice became practically immobile, suggesting severe cerebellar dysfunction. WwoxP47T/P47T mice brains revealed signs of progressive neuroinflammation with elevated astro-microgliosis that increased with age. Cerebellar cortex displayed significantly reduced molecular and granular layer thickness and a strikingly reduced number of Purkinje cells with degenerated dendrites. Transcriptome profiling from various brain regions of WW domain LoF mice highlighted widespread changes in neuronal and glial pathways, enrichment of bioprocesses related to neuroinflammation, and severe cerebellar dysfunction. Our results show significant pathobiological effects and potential mechanisms through which WWOX partial LoF leads to epilepsy, cerebellar neurodegeneration, neuroinflammation, and ataxia. Additionally, the mouse model described here will be a useful tool to understand the role of WWOX in common neurodegenerative conditions in which this gene has been identified as a novel risk factor.


Assuntos
Doenças Cerebelares , Epilepsia , Doenças Neurodegenerativas , Humanos , Camundongos , Animais , Doenças Neuroinflamatórias , Mutação , Fenótipo , Oxidorredutase com Domínios WW/genética , Proteínas Supressoras de Tumor/genética
6.
Cell Death Differ ; 30(4): 906-921, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36693903

RESUMO

Non-melanoma skin cancer (NMSC) has risen dramatically as a result of chronic exposure to sunlight ultraviolet (UV) radiation, climatic changes and clinical conditions associated with immunosuppression. In spite of considerable progress, our understanding of the mechanisms that control NMSC development and their associated molecular and immunological landscapes is still limited. Here we demonstrated a critical role for galectin-7 (Gal-7), a ß-galactoside-binding protein preferentially expressed in skin tissue, during NMSC development. Transgenic mice (Tg46) overexpressing Gal-7 in keratinocytes showed higher number of papillomas compared to WT mice or mice lacking Gal-7 (Lgals7-/-) when subjected to a skin carcinogenesis protocol, in which tumor initiator 7,12-dimethylbenz[a]anthracene (DMBA) and tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) were sequentially administered. RNAseq analysis of Tg46 tumor lesions revealed a unique profile compatible with cells of the myelomonocytic lineage infiltrating these tumors, an effect that was substantiated by a higher number of CD11b+Gr1+ cells in tumor-draining lymph nodes. Heightened c-Met activation and Cxcl-1 expression in Tg46 lesions suggested a contribution of this pathway to the recruitment of these cells. Remarkably, Gal-7 bound to the surface of CD11b+Ly6ChiLy6Glo monocytic myeloid cells and enhanced their immunosuppressive activity, as evidenced by increased IL-10 and TGF-ß1 secretion, and higher T-cell inhibitory activity. In vivo, carcinogen-treated Lgals7-/- animals adoptively transferred with Gal-7-conditioned monocytic myeloid cells developed higher number of papillomas, whereas depletion of these cells in Tg46-treated mice led to reduction in the number of tumors. Finally, human NMSC biopsies showed increased LGALS7 mRNA and Gal-7 protein expression and displayed transcriptional profiles associated with myeloid programs, accompanied by elevated CXCL1 expression and c-Met activation. Thus, Gal-7 emerges as a critical mediator of skin carcinogenesis and a potential therapeutic target in human NMSC.


Assuntos
Papiloma , Neoplasias Cutâneas , Camundongos , Animais , Humanos , Carcinógenos , Neoplasias Cutâneas/patologia , Papiloma/patologia , Carcinogênese/genética , Camundongos Transgênicos , Galectinas/genética , Pele/metabolismo , Imunidade Inata
7.
Clin Cancer Res ; 29(5): 866-877, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36269797

RESUMO

PURPOSE: Preclinical data suggest that antiprogestins inhibit the growth of luminal breast carcinomas that express higher levels of progesterone receptor isoform A (PRA) than isoform B (PRB). Thus, we designed a presurgical window of opportunity trial to determine the therapeutic effects of mifepristone in patients with breast cancer, based on their high PRA/PRB isoform ratio (MIPRA; NCT02651844). PATIENTS AND METHODS: Twenty patients with luminal breast carcinomas with PRA/PRB > 1.5 (determined by Western blots), and PR ≥ 50%, naïve from previous treatment, were included for mifepristone treatment (200 mg/day orally; 14 days). Core needle biopsies and surgical samples were formalin fixed for IHC studies, while others were snap-frozen to perform RNA sequencing (RNA-seq), proteomics, and/or Western blot studies. Plasma mifepristone levels were determined using mass spectrometry. The primary endpoint was the comparison of Ki67 expression pretreatment and posttreatment. RESULTS: A 49.62% decrease in Ki67 staining was observed in all surgical specimens compared with baseline (P = 0.0003). Using the prespecified response parameter (30% relative reduction), we identified 14 of 20 responders. Mifepristone induced an increase in tumor-infiltrating lymphocytes; a decrease in hormone receptor and pSer118ER expression; and an increase in calregulin, p21, p15, and activated caspase 3 expression. RNA-seq and proteomic studies identified downregulated pathways related to cell proliferation and upregulated pathways related to immune bioprocesses and extracellular matrix remodeling. CONCLUSIONS: Our results support the use of mifepristone in patients with luminal breast cancer with high PRA/PRB ratios. The combined effects of mifepristone and estrogen receptor modulators warrant clinical evaluation to improve endocrine treatment responsiveness in these patients. See related commentary by Ronchi and Brisken, p. 833.


Assuntos
Neoplasias da Mama , Mifepristona , Humanos , Feminino , Mifepristona/farmacologia , Mifepristona/uso terapêutico , Receptores de Progesterona/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteômica , Antígeno Ki-67 , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
8.
Cancers (Basel) ; 14(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35740485

RESUMO

Long non-coding RNAs are increasingly being recognized as cancer biomarkers in various malignancies, acting as either tumor suppressors or oncogenes. The long non-coding MALINC1 intergenic RNA was identified as significantly upregulated in breast ductal carcinoma in situ. The aim of this study was to characterize MALINC1 expression, localization, and phenotypic and molecular effects in non-invasive and invasive breast cancer cells. We determined that MALINC1 is an estrogen-estrogen receptor-modulated lncRNA enriched in the cytoplasmic fraction of luminal A/B breast cancer cells that is associated with worse overall survival in patients with primary invasive breast carcinomas. Transcriptomic studies in normal and DCIS cells identified the main signaling pathways modulated by MALINC1, which mainly involve bioprocesses related to innate and adaptive immune responses, extracellular matrix remodeling, cell adhesion, and activation of AP-1 signaling pathway. We determined that MALINC1 induces premalignant phenotypic changes by increasing cell migration in normal breast cells. Moreover, high MALINC1 expression in invasive carcinomas was associated with a pro-tumorigenic immune environment and a favorable predicted response to immunotherapy both in luminal and basal-like subtypes compared with low-MALINC1-expression tumors. We conclude that MALINC1 behaves as an oncogenic and immune-related lncRNA involved with early-stage breast cancer progression.

9.
Cancer Res Commun ; 2(11): 1372-1387, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36818489

RESUMO

Aberrant expression of protein kinase C (PKC) isozymes is a hallmark of cancer. The different members of the PKC family control cellular events associated with cancer development and progression. Whereas the classical/conventional PKCα isozyme has been linked to tumor suppression in most cancer types, here we demonstrate that this kinase is required for the mitogenic activity of aggressive human prostate cancer cells displaying aberrantly high PKCα expression. Immunohistochemical analysis showed abnormal up-regulation of PKCα in human primary prostate tumors. Interestingly, silencing PKCα expression from aggressive prostate cancer cells impairs cell cycle progression, proliferation and invasion, as well as their tumorigenic activity in a mouse xenograft model. Mechanistic analysis revealed that PKCα exerts a profound control of gene expression, particularly over genes and transcriptional networks associated with cell cycle progression and E2F transcription factors. PKCα RNAi depletion from PC3 prostate cancer cells led to a reduction in the expression of pro-inflammatory cytokine and epithelial-to-mesenchymal transition (EMT) genes, as well as a prominent down-regulation of the immune checkpoint ligand PD-L1. This PKCα-dependent gene expression profile was corroborated in silico using human prostate cancer databases. Our studies established PKCα as a multifunctional kinase that plays pleiotropic roles in prostate cancer, particularly by controlling genetic networks associated with tumor growth and progression. The identification of PKCα as a pro-tumorigenic kinase in human prostate cancer provides strong rationale for the development of therapeutic approaches towards targeting PKCα or its effectors.


Assuntos
Neoplasias da Próstata , Proteína Quinase C-alfa , Masculino , Humanos , Camundongos , Animais , Proteína Quinase C-alfa/genética , Redes Reguladoras de Genes , Proteína Quinase C/genética , Divisão Celular , Neoplasias da Próstata/genética , Isoenzimas/genética
10.
Bioinformatics ; 38(3): 866-868, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34586379

RESUMO

MOTIVATION: Large-scale cancer genome projects have generated genomic, transcriptomic, epigenomic and clinicopathological data from thousands of samples in almost every human tumor site. Although most omics data and their associated resources are publicly available, its full integration and interpretation to dissect the sources of gene expression modulation require specialized knowledge and software. RESULTS: We present Multiomix, an interactive cloud-based platform that allows biologists to identify genetic and epigenetic events associated with the transcriptional modulation of cancer-related genes through the analysis of multi-omics data available on public functional genomic databases or user-uploaded datasets. Multiomix consists of an integrated set of functions, pipelines and a graphical user interface that allows retrieval, aggregation, analysis and visualization of different omics data sources. After the user provides the data to be analyzed, Multiomix identifies all significant correlations between mRNAs and non-mRNA genomics features (e.g. miRNA, DNA methylation and CNV) across the genome, the predicted sequence-based interactions (e.g. miRNA-mRNA) and their associated prognostic values. AVAILABILITY AND IMPLEMENTATION: Multiomix is available at https://www.multiomix.org. The source code is freely available at https://github.com/omics-datascience/multiomix. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
MicroRNAs , Neoplasias , Humanos , Epigenômica , Computação em Nuvem , Genômica , Neoplasias/genética , Software , MicroRNAs/genética , Transcriptoma , Oncogenes
11.
Front Oncol ; 11: 783211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869037

RESUMO

The long-non-coding HOX transcript antisense intergenic RNA (HOTAIR) was identified as significantly upregulated in breast ductal carcinoma in situ (DCIS). The aim of this study was to characterize the phenotypic effects and signaling pathways modulated by HOTAIR in early-stage breast cancer progression. We determined that HOTAIR induces premalignant phenotypic changes by increasing cell proliferation, migration, invasion and in vivo growth in normal and DCIS breast cell lines. Transcriptomic studies (RNA-seq) identified the main signaling pathways modulated by HOTAIR which include bioprocesses related to epithelial to mesenchymal transition, cell migration, extracellular matrix remodeling and activation of several signaling pathways (HIF1A, AP1 and FGFR). Similar pathways were identified as activated in primary invasive breast carcinomas with HOTAIR over-expression. We conclude that HOTAIR over-expression behaves as a positive regulator of cell growth and migration both in normal and DCIS breast cells involved with early-stage breast cancer progression.

12.
Cell Rep ; 37(5): 109905, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731623

RESUMO

Despite the undisputable role of the small GTPase Rac1 in the regulation of actin cytoskeleton reorganization, the Rac guanine-nucleotide exchange factors (Rac-GEFs) involved in Rac1-mediated motility and invasion in human lung adenocarcinoma cells remain largely unknown. Here, we identify FARP1, ARHGEF39, and TIAM2 as essential Rac-GEFs responsible for Rac1-mediated lung cancer cell migration upon EGFR and c-Met activation. Noteworthily, these Rac-GEFs operate in a non-redundant manner by controlling distinctive aspects of ruffle dynamics formation. Mechanistic analysis reveals a leading role of the AXL-Gab1-PI3K axis in conferring pro-motility traits downstream of EGFR. Along with the positive association between the overexpression of Rac-GEFs and poor lung adenocarcinoma patient survival, we show that FARP1 and ARHGEF39 are upregulated in EpCam+ cells sorted from primary human lung adenocarcinomas. Overall, our study reveals fundamental insights into the complex intricacies underlying Rac-GEF-mediated cancer cell motility signaling, hence underscoring promising targets for metastatic lung cancer therapy.


Assuntos
Adenocarcinoma de Pulmão/enzimologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neoplasias Pulmonares/enzimologia , Receptores Proteína Tirosina Quinases/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Idoso , Movimento Celular , Molécula de Adesão da Célula Epitelial/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores Proteína Tirosina Quinases/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/genética , Receptor Tirosina Quinase Axl
13.
Front Oncol ; 11: 687629, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222014

RESUMO

Regulatory pathways involving non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNA), have gained great relevance due to their role in the control of gene expression modulation. Using RNA sequencing of KSHV Bac36 transfected mouse endothelial cells (mECK36) and tumors, we have analyzed the host and viral transcriptome to uncover the role lncRNA-miRNA-mRNA driven networks in KSHV tumorigenesis. The integration of the differentially expressed ncRNAs, with an exhaustive computational analysis of their experimentally supported targets, led us to dissect complex networks integrated by the cancer-related lncRNAs Malat1, Neat1, H19, Meg3, and their associated miRNA-target pairs. These networks would modulate pathways related to KSHV pathogenesis, such as viral carcinogenesis, p53 signaling, RNA surveillance, and cell cycle control. Finally, the ncRNA-mRNA analysis allowed us to develop signatures that can be used to an appropriate identification of druggable gene or networks defining relevant AIDS-KS therapeutic targets.

14.
Oncol Rep ; 46(2)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34109992

RESUMO

Rhomboid pseudoproteases are catalytically inactive members of the rhomboid superfamily that modulate the traffic, turnover and activity of their target proteins. Rhomboid domain containing 2 (RHBDD2) is a rhomboid family member overexpressed during mammary gland development and advanced stages of breast cancer. Interactome profiling studies have identified RHBDD2 as a novel binding partner of WW domain­containing oxidoreductase (WWOX) protein. The present study characterized the RHBDD2­WWOX interaction in proliferating and differentiated stages of normal mammary and breast cancer cells by co­immunoprecipitation and confocal microscopy. Normal breast and proliferating cancer cells showed significantly increased RHBDD2 mRNA levels compared with their differentiated counterparts. WWOX mRNA was primarily expressed in differentiated cells. WWOX co­precipitated with RHBDD2, indicating that endogenous RHBDD2 and WWOX were physically associated in normal and breast cancer proliferating cells compared with the differentiated stage. Co­localization assays corroborated the co­immunoprecipitation results, demonstrating the RHBDD2­WWOX protein interaction in normal and proliferating breast cancer cells. RHBDD2 harbors a conserved LPPY motif at the C­terminus region that directly interacted with the WW domains of WWOX. Since WWOX serves as an inhibitor of the TGFß/SMAD3 signaling pathway in breast cells, modulation of SMAD3 target genes was analyzed in proliferating and differentiated mammary cells and in RHBDD2 silencing assays. Increased expression levels of SMAD3­regulated genes were detected in proliferating cells compared with their differentiated counterparts. Follistatin and angiopoietin­like 4 mRNA was significantly downregulated in RHBDD2 transiently silenced cells compared with scrambled control small interfering RNA. Based on these results, WWOX was suggested to be a novel RHBDD2 target protein involved in the modulation of breast epithelial cell proliferation and differentiation.


Assuntos
Neoplasias da Mama/metabolismo , Glândulas Mamárias Humanas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/metabolismo , Animais , Neoplasias da Mama/genética , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Proteínas de Membrana/química , Camundongos , Ligação Proteica , Domínios Proteicos , Transdução de Sinais , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Regulação para Cima , Oxidorredutase com Domínios WW/química , Oxidorredutase com Domínios WW/genética
15.
Genomics ; 113(4): 2614-2622, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118379

RESUMO

Pregnancy alters B cell development and function. B cell activation is initiated by antigens binding to the BCR leading to B cell survival, proliferation, antigen presentation and antibody production. We performed a genome-wide transcriptome profiling of splenic B cells from pregnant (P) and non-pregnant (NP) mice and identified 1136 genes exhibiting differential expression in B cells from P mice (625 up- and 511 down-regulated) compared to NP animals. In silico analysis showed that B cell activation through BCR seems to be lowered during pregnancy. RT-qPCR analysis confirmed these data. Additionally, B cells from pregnant women stimulated in vitro through BCR produced lower levels of inflammatory cytokines compared to non-pregnant women. Our results suggest that B cells acquire a state of hypo-responsiveness during gestation, probably as part of the maternal immune strategy for fetal tolerance but also open new avenues to understand why pregnant women are at highest risk for infections.


Assuntos
Linfócitos B , Transcriptoma , Animais , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Ativação Linfocitária , Camundongos , Gravidez
16.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34006646

RESUMO

Colorectal cancer (CRC) represents the third most common malignancy and the second leading cause of cancer-related deaths worldwide. Although immunotherapy has taken center stage in mainstream oncology, it has shown limited clinical efficacy in CRC, generating an urgent need for discovery of new biomarkers and potential therapeutic targets. Galectin-1 (Gal-1), an endogenous glycan-binding protein, induces tolerogenic programs and contributes to tumor cell evasion of immune responses. Here, we investigated the relevance of Gal-1 in CRC and explored its modulatory activity within the CD8+ regulatory T cell (Treg) compartment. Mice lacking Gal-1 (Lgals1-/- ) developed a lower number of tumors and showed a decreased frequency of a particular population of CD8+CD122+PD-1+ Tregs in the azoxymethane-dextran sodium sulfate model of colitis-associated CRC. Moreover, silencing of tumor-derived Gal-1 in the syngeneic CT26 CRC model resulted in reduced number and attenuated immunosuppressive capacity of CD8+CD122+PD-1+ Tregs, leading to slower tumor growth. Moreover, stromal Gal-1 also influenced the fitness of CD8+ Tregs, highlighting the contribution of both tumor and stromal-derived Gal-1 to this immunoregulatory effect. Finally, bioinformatic analysis of a colorectal adenocarcinoma from The Cancer Genome Atlas dataset revealed a particular signature characterized by high CD8+ Treg score and elevated Gal-1 expression, which delineates poor prognosis in human CRC. Our findings identify CD8+CD122+PD-1+ Tregs as a target of the immunoregulatory activity of Gal-1, suggesting a potential immunotherapeutic strategy for the treatment of CRC.


Assuntos
Adenocarcinoma/genética , Linfócitos T CD8-Positivos/imunologia , Colite/genética , Neoplasias Colorretais/genética , Galectina 1/genética , Linfócitos T Reguladores/imunologia , Adenocarcinoma/imunologia , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Animais , Atlas como Assunto , Azoximetano/administração & dosagem , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Colite/induzido quimicamente , Colite/imunologia , Colite/mortalidade , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Biologia Computacional , Sulfato de Dextrana/administração & dosagem , Modelos Animais de Doenças , Galectina 1/deficiência , Galectina 1/imunologia , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade beta de Receptor de Interleucina-2/genética , Subunidade beta de Receptor de Interleucina-2/imunologia , Camundongos , Camundongos Knockout , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais , Análise de Sobrevida , Linfócitos T Reguladores/patologia , Carga Tumoral
17.
Oncogenesis ; 10(3): 28, 2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33714979

RESUMO

Tumor cell dissemination in cancer patients is associated with a significant reduction in their survival and quality of life. The ubiquitination pathway plays a fundamental role in the maintenance of protein homeostasis both in normal and stressed conditions and its dysregulation has been associated with malignant transformation and invasive potential of tumor cells, thus highlighting its value as a potential therapeutic target. In order to identify novel molecular targets of tumor cell migration and invasion we performed a genetic screen with an shRNA library against ubiquitination pathway-related genes. To this end, we set up a protocol to specifically enrich positive migration regulator candidates. We identified the deubiquitinase USP19 and demonstrated that its silencing reduces the migratory and invasive potential of highly invasive breast cancer cell lines. We extended our investigation in vivo and confirmed that mice injected with USP19 depleted cells display increased tumor-free survival, as well as a delay in the onset of the tumor formation and a significant reduction in the appearance of metastatic foci, indicating that tumor cell invasion and dissemination is impaired. In contrast, overexpression of USP19 increased cell invasiveness both in vitro and in vivo, further validating our findings. More importantly, we demonstrated that USP19 catalytic activity is important for the control of tumor cell migration and invasion, and that its molecular mechanism of action involves LRP6, a Wnt co-receptor. Finally, we showed that USP19 overexpression is a surrogate prognostic marker of distant relapse in patients with early breast cancer. Altogether, these findings demonstrate that USP19 might represent a novel therapeutic target in breast cancer.

18.
Transl Oncol ; 14(6): 101084, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33789221

RESUMO

Anal squamous cell carcinoma (ASCC) is a rare gastrointestinal malignancy associated with high-risk Human papillomavirus (HPV) infection. Despite improved outcomes in non-metastatic ASCC, definitive chemoradiotherapy constitutes the standard treatment for localized disease. Evidences for predictive and prognostic biomarkers are limited. Here, we performed a viral, immune, and mutational characterization of 79 non-metastatic ASCC patients with complete definitive chemoradiotherapy. HPV-16 was detected in 91% of positive cases in single infections (78%) or in coinfections with multiple genotypes (22%). Fifty-four percent of non-metastatic ASCC cases displayed mutations affecting cancer driver genes such as PIK3CA (21% of cases), TP53 (15%), FBXW7 (9%), and APC (6%). PD-L1 expression was detected in 57% of non-metastatic ASCC. Increased PD-L1 positive cases (67%) were detected in patients with complete response compared with non-complete response to treatment (37%) (p = 0.021). Furthermore, patients with PD-L1 positive tumors were significantly associated with better disease-free survival (DFS) and overall survival (OS) compared with patients with PD-L1 negative tumors (p = 0.006 and p = 0.002, respectively). PD-L1 expression strongly impacts CR rate and survival of non-metastatic ASCC patients after standard definitive chemoradiotherapy. PD-L1 expression could be used to stratify good versus poor responders avoiding the associated morbidity with abdominal perineal resection.

19.
Front Oncol ; 11: 801880, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071006

RESUMO

Rectal Cancer (RC) is a complex disease that involves highly variable treatment responses. Currently, there is a lack of reliable markers beyond TNM to deliver a personalized treatment in a cancer setting where the goal is a curative treatment. Here, we performed an integrated characterization of the predictive and prognostic role of clinical features, mismatch-repair deficiency markers, HER2, CDX2, PD-L1 expression, and CD3-CD8+ tumor-infiltrating lymphocytes (TILs) coupled with targeted DNA sequencing of 76 non-metastatic RC patients assigned to total mesorectal excision upfront (TME; n = 15) or neoadjuvant chemo-radiotherapy treatment (nCRT; n = 61) followed by TME. Eighty-two percent of RC cases displayed mutations affecting cancer driver genes such as TP53, APC, KRAS, ATM, and PIK3CA. Good response to nCRT treatment was observed in approximately 40% of the RC cases, and poor pathological tumor regression was significantly associated with worse disease-free survival (DFS, HR = 3.45; 95%CI = 1.14-10.4; p = 0.028). High neutrophils-platelets score (NPS) (OR = 10.52; 95%CI=1.34-82.6; p = 0.025) and KRAS mutated cases (OR = 5.49; 95%CI = 1.06-28.4; p = 0.042) were identified as independent predictive factors of poor response to nCRT treatment in a multivariate analysis. Furthermore, a Cox proportional-hazard model showed that the KRAS mutational status was an independent prognostic factor associated with higher risk of local recurrence (HR = 9.68; 95%CI = 1.01-93.2; p <0.05) and shorter DFS (HR = 2.55; 95%CI = 1.05-6.21; p <0.05), while high CEA serum levels were associated with poor DFS (HR = 2.63; 95%CI = 1.01-6.85; p <0.05). Integrated clinical and molecular-based unsupervised analysis allowed us to identify two RC prognostic groups (cluster 1 and cluster 2) associated with disease-specific OS (HR = 20.64; 95%CI = 2.63-162.2; p <0.0001), metastasis-free survival (HR = 3.67; 95%CI = 1.22-11; p = 0.012), local recurrence-free survival (HR = 3.34; 95%CI = 0.96-11.6; p = 0.043) and worse DFS (HR = 2.68; 95%CI = 1.18-6.06; p = 0.012). The worst prognosis cluster 2 was enriched by stage III high-risk clinical tumors, poor responders to nCRT, with low TILs density and high frequency of KRAS and TP53 mutated cases compared with the best prognosis cluster 1 (p <0.05). Overall, this study provides a comprehensive and integrated characterization of non-metastatic RC cases as a new insight to deliver a personalized therapeutic approach.

20.
Diabetes Metab Res Rev ; 37(1): e3359, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32500584

RESUMO

AIM: To identify new transcriptomic alterations in pancreatic islets associated with metabolic dysfunctions in people with prediabetes (PD)/type 2 diabetes (T2D). MATERIALS AND METHODS: We collected information from public data repositories T2D related microarray datasets from pancreatic islets. We identified Differential Expressed Genes (DEGs) in non-diabetic (ND) vs people with T2D in each study. To identify relevant DEGs in T2D, we selected those that varied consistently in the different studies for further meta-analysis and functional enrichment analysis. DEGs were also evaluated at the PD stage. RESULTS: A total of seven microarray datasets were collected and analysed to find the DEGs in each study and meta-analysis was performed with 245 ND and 96 T2D cases. We identified 55 transcriptional alterations potentially associated with specific metabolic dysfunctions in T2D. Meta-analysis showed that 87% of transcripts identified as DEGs (48 out of 55) were confirmed as having statistically significant up- or down-modulation in T2D compared to ND. Notably, nine of these DEGs have not been previously reported as dysregulated in pancreatic islets from people with T2D. Consistently, the most significantly enriched pathways were related to the metabolism and/or development/maintenance of ß-cells. Eighteen of the 48 selected DEGs (38%) showed an altered expression in islets from people with PD. CONCLUSIONS: These results provide new evidence to interpret the pathogenesis of T2D and the transition from PD to T2D. Further studies are necessary to validate its potential use for the development/implementation of efficient new strategies for the prevention, diagnosis/prognosis and treatment of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Transcriptoma , Diabetes Mellitus Tipo 2/genética , Perfilação da Expressão Gênica , Humanos , Ilhotas Pancreáticas , Estado Pré-Diabético/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...